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1 Introduction

Since the late 1990s there has been a large number of studies in economics applying and

extending RD methods, including Van der Klaauw (2002), Black (1999), Angrist and

Lavy (1999), Lee (this volume), Chay and Greenstone (2005), DiNardo and Lee (2004),

Chay, McEwan, and Urquiola (2005), McEwan and Shapiro (2007), and Card, Mas and

Rothstein (2006). Key theoretical and conceptual contributions include the interpretation

of estimates for fuzzy regression discontinuity designs allowing for general heterogeneity

of treatment e¤ects (Hahn, Todd and Van der Klaauw, 2001, HTV from hereon), adaptive

estimation methods (Sun, 2005), speci�c methods for choosing bandwidths (Ludwig and

Miller, 2005), and various tests for discontinuities in means and distributions of non-

a¤ected variables (Lee, this volume; McCrary, this volume).

In this paper, we review some of the practical issues in implementation of RDmethods.

There is relatively little novel in this discussion. Our general goal is instead to address

practical issues in implementing RD designs and review some of the new theoretical

developments.

After reviewing some basic concepts in Section 2, the paper focuses on �ve speci�c

issues in the implementation of RD designs. In Section 3 we stress graphical analyses

as powerful methods for illustrating the design. In Section 4 we discuss estimation and

suggest using local linear regression methods using only the observations close to the

discontinuity point. In Section 5 we propose choosing the bandwidth using cross valida-

tion. In Section 6 we provide a simple plug-in estimator for the asymptotic variance and

a second estimator that exploits the link with instrumental variables methods derived

by HTV. In Section 7 we discuss a number of speci�cation tests and sensitivity analyses

based on tests for (a) discontinuities in the average values for covariates, (b) discontinu-

ities in the conditional density of the forcing variable, as suggested by McCrary, and (c)

discontinuities in the average outcome at other values of the forcing variable.
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2 Sharp and Fuzzy Regression Discontinuity Designs

2.1 Basics

Our discussion will frame the RD design in the context of the modern literature on causal

e¤ects and treatment e¤ects, using the Rubin Causal Model (RCM) set up with potential

outcomes (Rubin, 1974; Holland, 1986; Imbens and Rubin, 2007), rather than the regres-

sion framework that was originally used in this literature. For a general discussion of the

RCM and its use in the economic literature, see the survey by Imbens and Wooldridge

(2007).

In the basic setting for the RCM (and for the RD design), researchers are interested in

the causal e¤ect of a binary intervention or treatment. Units, which may be individuals,

�rms, countries, or other entities, are either exposed or not exposed to a treatment.

The e¤ect of the treatment is potentially heterogenous across units. Let Yi(0) and Yi(1)

denote the pair of potential outcomes for unit i: Yi(0) is the outcome without exposure

to the treatment, and Yi(1) is the outcome given exposure to the treatment. Interest is in

some comparison of Yi(0) and Yi(1). Typically, including in this discussion, we focus on

di¤erences Yi(1) � Yi(0). The fundamental problem of causal inference is that we never

observe the pair Yi(0) and Yi(1) together. We therefore typically focus on average e¤ects

of the treatment, that is, averages of Yi(1) � Yi(0) over (sub-)populations, rather than
on unit-level e¤ects. For unit i we observe the outcome corresponding to the treatment

received. Let Wi 2 f0; 1g denote the treatment received, with Wi = 0 if unit i was not

exposed to the treatment, and Wi = 1 otherwise. The outcome observed can then be

written as

Yi = (1�Wi) � Yi(0) +Wi � Yi(1) =
�
Yi(0) if Wi = 0;
Yi(1) if Wi = 1:

In addition to the assignment Wi and the outcome Yi, we may observe a vector of co-

variates or pretreatment variables denoted by (Xi; Zi), where Xi is a scalar and Zi is an

M -vector. A key characteristic of Xi and Zi is that they are known not to have been

a¤ected by the treatment. Both Xi and Zi are covariates, with a special role played by

Xi in the RD design. For each unit we observe the quadruple (Yi;Wi; Xi; Zi). We assume

that we observe this quadruple for a random sample from some well-de�ned population.

The basic idea behind the RD design is that assignment to the treatment is deter-
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mined, either completely or partly, by the value of a predictor (the covariate Xi) being

on either side of a �xed threshold. This predictor may itself be associated with the po-

tential outcomes, but this association is assumed to be smooth, and so any discontinuity

of the conditional distribution (or of a feature of this conditional distribution such as the

conditional expectation) of the outcome as a function of this covariate at the cuto¤ value

is interpreted as evidence of a causal e¤ect of the treatment.

The design often arises from administrative decisions, where the incentives for units to

participate in a program are partly limited for reasons of resource constraints, and clear

transparent rules rather than discretion by administrators are used for the allocation of

these incentives. Examples of such settings abound. For example, Hahn, Todd and Van

der Klaauw (1999) study the e¤ect of an anti-discrimination law that only applies to

�rms with at least 15 employees. In another example, Matsudaira (this volume) studies

the e¤ect of a remedial summer school program that is mandatory for students who score

less than some cuto¤ level on a test (see also Jacob and Lefgren, 2004). Access to public

goods such as libraries or museums is often eased by lower prices for individuals depending

on an age cuto¤ value (senior citizen discounts, and discounts for children under some

age limit). Similarly, eligibility for medical services through medicare is restricted by age

(Card, Dobkin and Maestas, 2006).

2.2 The Sharp Regression Discontinuity Design

It is useful to distinguish between two general settings, the Sharp and the Fuzzy Re-

gression Discontinuity (SRD and FRD from hereon) designs (e.g., Trochim, 1984, 2001;

HTV). In the SRD design the assignment Wi is a deterministic function of one of the

covariates, the forcing (or treatment-determining) variable X:1

Wi = 1fXi � cg:

All units with a covariate value of at least c are assigned to the treatment group (and

participation is mandatory for these individuals), and all units with a covariate value

1Here we take Xi to be a scalar. More generally, the assignment can be a function of a vector of
covariates. Formally, we can write this as the treatment indicator being an indicator for the vector Xi
being an element of a subset of the covariate space, or

Wi = 1fXi 2 X1g;

where X1 � X, and X is the covariate space.
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less than c are assigned to the control group (members of this group are not eligible

for the treatment). In the SRD design we look at the discontinuity in the conditional

expectation of the outcome given the covariate to uncover an average causal e¤ect of the

treatment:

lim
x#c
E[YijXi = x]� lim

x"c
E[YijXi = x];

which is interpreted as the average causal e¤ect of the treatment at the discontinuity

point:

�SRD = E[Yi(1)� Yi(0)jXi = c]: (2.1)

Figures 1 and 2 illustrate the identi�cation strategy in the SRD set up. Based on

arti�cial population values, we present in Figure 1 the conditional probability of receiving

the treatment, Pr(W = 1jX = x) against the covariate x. At x = 6 the probability jumps

from zero to one. In Figure 2, three conditional expectations are plotted. The two dashed

lines in the �gure are the conditional expectations of the two potential outcomes given the

covariate, �w(x) = E[Y (w)jX = x], for w = 0; 1. These two conditional expectations are

continuous functions of the covariate. Note that we can only estimate �0(x) for x < c,

and �1(x) for x � c. In addition we plot the conditional expectation of the observed

outcome,

E[Y jX = x] =

E[Y jW = 0; X = x]�Pr(W = 0jX = x)+E[Y jW = 1; X = x]�Pr(W = 1jX = x)

in Figure 2, indicated by a solid line. Although the two conditional expectations of the

potential outcomes �w(x) are continuous, the conditional expectation of the observed

outcome jumps at x = c = 6.

Now let us discuss the interpretation of limx#c E[YijXi = x]� limx"c E[YijXi = x] as an

average causal e¤ect in more detail. In the SRD design, the widely used unconfoundedness

assumption (e.g., Rosenbaum and Rubin, 1983, Imbens, 2004) underlying most matching-

type estimators still holds:

Yi(0); Yi(1) ?? Wi

���� Xi:
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This assumption holds in a trivial manner, because conditional on the covariates there

is no variation in the treatment. However, this assumption cannot be exploited directly.

The problem is that the second assumption that is typically used for matching-type

approaches, the overlap assumption which requires that for all values of the covariates

there are both treated and control units, or

0 < Pr(Wi = 1jXi = x) < 1;

is fundamentally violated. In fact, for all values of x the probability of assignment is

either zero or one, rather than always between zero and one as required by the overlap

assumption. As a result, there are no values of x with overlap.

This implies there is a unavoidable need for extrapolation. However, in large samples

the amount of extrapolation required to make inferences is arbitrarily small, as we only

need to infer the conditional expectation of Y (w) given the covariates " away from where

it can be estimated. To avoid non-trivial extrapolation we focus on the average treatment

e¤ect at X = c,

�SRD = E [Y (1)� Y (0)jX = c] = E [Y (1)jX = c]� E [Y (0)jX = c] : (2.2)

By design, there are no units with Xi = c for whom we observe Yi(0). We therefore will

exploit the fact that we observe units with covariate values arbitrarily close to c.2 In order

to justify this averaging we make a smoothness assumption. Typically this assumption

is formulated in terms of conditional expectations:

Assumption 2.1 (Continuity of Conditional Regression Functions)

E[Y (0)jX = x] and E[Y (1)jX = x];

are continuous in x.

More generally, one might want to assume that the conditional distribution function is

smooth in the covariate. Let FY (w)jX(yjx) = Pr(Y (w) � yjX = x) denote the conditional

distribution function of Y (w) given X. Then the general version of the assumption is:

2Although in principle the �rst term in the di¤erence in (2.2) would be straightforward to estimate if
we actually observed individuals with Xi = x, with continuous covariates we also need to estimate this
term by averaging over units with covariate values close to c.
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Assumption 2.2 (Continuity of Conditional Distribution Functions)

FY (0)jX(yjx) and FY (1)jX(yjx);

are continuous in x for all y.

Both these assumptions are stronger than required, as we will only use continuity

at x = c, but it is rare that it is reasonable to assume continuity for one value of the

covariate, but not at other values of the covariate. We therefore make the stronger

assumption.

Under either assumption,

E[Y (0)jX = c] = lim
x"c
E[Y (0)jX = x] = lim

x"c
E[Y (0)jW = 0; X = x] = lim

x"c
E[Y jX = x];

and similarly

E[Y (1)jX = c] = lim
x#c
E[Y jX = x]:

Thus, the average treatment e¤ect at c, �SRD, satis�es

�SRD = lim
x#c
E[Y jX = x]� lim

x"c
E[Y jX = x]:

The estimand is the di¤erence of two regression functions at a point. Hence, if we try to

estimate this object without parametric assumptions on the two regression functions, we

do not obtain root�N consistent estimators. Instead we get consistent estimators that

converge to their limits at a slower, nonparametric rates.

As an example of a SRD design, consider the study of the e¤ect of party a¢ liation

of a congressman on congressional voting outcomes by Lee (this volume). See also Lee,

Moretti and Butler (2004). The key idea is that electoral districts where the share of the

vote for a Democrat in a particular election was just under 50% are on average similar in

many relevant respects to districts where the share of the Democratic vote was just over

50%, but the small di¤erence in votes leads to an immediate and big di¤erence in the

party a¢ liation of the elected representative. In this case, the party a¢ liation always

jumps at 50%, making this is a SRD design. Lee looks at the incumbency e¤ect. He is

interested in the probability of Democrats winning the subsequent election, comparing

districts where the Democrats won the previous election with just over 50% of the popular

vote with districts where the Democrats lost the previous election with just under 50%

of the vote.
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2.3 The Fuzzy Regression Discontinuity Design

In the Fuzzy Regression Discontinuity (FRD) design, the probability of receiving the

treatment needs not change from zero to one at the threshold. Instead, the design allows

for a smaller jump in the probability of assignment to the treatment at the threshold:

lim
x#c
Pr(Wi = 1jXi = x) 6= lim

x"c
Pr(Wi = 1jXi = x);

without requiring the jump to equal 1. Such a situation can arise if incentives to partici-

pate in a program change discontinuously at a threshold, without these incentives being

powerful enough to move all units from nonparticipation to participation. In this design

we interpret the ratio of the jump in the regression of the outcome on the covariate to the

jump in the regression of the treatment indicator on the covariate as an average causal

e¤ect of the treatment. Formally, the estimand is

�FRD =
limx#c E[Y jX = x]� limx"c E[Y jX = x]

limx#c E[W jX = x]� limx"c E[W jX = x]
:

Let us �rst consider the interpretation of this ratio. HTV, in arguably the most

important theoretical paper in the recent RD literature, exploit the instrumental variables

connection to interpret the fuzzy regression discontinuity design when the e¤ect of the

treatment varies by unit, as in Imbens and Angrist (1994).3 Let Wi(x) be potential

treatment status given cuto¤ point x, for x in some small neighborhood around c. Wi(x)

is equal to one if unit i would take or receive the treatment if the cuto¤ point was equal

to x. This requires that the cuto¤point is at least in principle manipulable. For example,

if X is age, one could imagine changing the age that makes an individual eligible for the

treatment from c to c+ �. Then it is useful to assume monotonicity (see HTV):

Assumption 2.3 Wi(x) is non-increasing in x at x = c.

Next, de�ne compliance status. This concept is similar to the one used in instrumental

variables settings (e.g., Angrist, Imbens and Rubin, 1996). A complier is a unit such that

lim
x#Xi

Wi(x) = 0; and lim
x"Xi

Wi(x) = 1:

3The close connection between FRD and instrumental variables models led researchers in a number of
cases to interpret RD designs as instrumental variables settings. See, for example, Angrist and Krueger
(1991) and Imbens and Van der Klaauw (1995). The main advantage of thinking of these designs as RD
designs is that it suggests the speci�cation analyses from Section 7.
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Compliers are units that would get the treatment if the cuto¤ were at Xi or below,

but that would not get the treatment if the cuto¤ were higher than Xi. To be speci�c,

consider an example where individuals with a test score less than c are encouraged for

a remedial teaching program (Matsudaira, this issue). Interest is in the e¤ect of the

program on subsequent test scores. Compliers are individuals who would participate

if encouraged (if the test score is below the cuto¤ for encouragement), but not if not

encouraged (if test score is above the cuto¤ for encouragement). Nevertakers are units

with

lim
x#Xi

Wi(x) = 0; and lim
x"Xi

Wi(x) = 0;

and alwaystakers are units with

lim
x#Xi

Wi(x) = 1; and lim
x"Xi

Wi(x) = 1:

Then

�FRD =
limx#c E[Y jX = x]� limx"c E[Y jX = x]

limx#c E[W jX = x]� limx"c E[W jX = x]

= E[Yi(1)� Yi(0)junit i is a complier and Xi = c]:

The estimand is an average e¤ect of the treatment, but only averaged for units with

Xi = c (by regression discontinuity), and only for compliers (people who are a¤ected by

the threshold).

In Figure 3 we plot the conditional probability of receiving the treatment for an FRD

design. As in the SRD design, this probability still jumps at x = 6, but now by an

amount less than one. Figure 4 presents the expectation of the potential outcomes given

the covariate and the treatment, E[Y (w)jW = w;X = x], represented by the dashed

lines, as well as the conditional expectation of the observed outcome given the covariate

(solid line):

E[Y jX = x]

= E[Y (0)jW = 0; X = x]�Pr(W = 0jX = x)+E[Y (1)jW = 1; X = x]�Pr(W = 1jX = x):

Note that it is no longer necessarily the case here that E[Y (w)jW = w;X = x] =

E[Y (w)jX = x]. Under some assumptions (unconfoundedness) this will be true, but this

is not necessary for inference regarding causal e¤ects in the FRD setting.
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As an example of a FRD design, consider the study of the e¤ect of �nancial aid on

college attendance by Van der Klaauw (2002). Van der Klaauw looks at the e¤ect of

�nancial aid on acceptance on college admissions. Here Xi is a numerical score assigned

to college applicants based on the objective part of the application information (SAT

scores, grades) used to streamline the process of assigning �nancial aid o¤ers. During the

initial stages of the admission process, the applicants are divided into L groups based on

discretized values of these scores. Let

Gi =

8>>><>>>:
1 if 0 � Xi < c1
2 if c1 � Xi < c2
...
L if cL�1 � Xi

denote the �nancial aid group. For simplicity, let us focus on the case with L = 2, and

a single cuto¤ point c. Having a score of just over c will put an applicant in a higher

category and increase the chances of �nancial aid discontinuously compared to having a

score of just below c. The outcome of interest in the Van der Klaauw study is college

attendance. In this case, the simple association between attendance and the �nancial aid

o¤er is ambiguous. On the one hand, an aid o¤er makes the college more attractive to

the potential student. This is the causal e¤ect of interest. On the other hand, a student

who gets a generous �nancial aid o¤er is likely to have better outside opportunities in

the form of �nancial aid o¤ers from other colleges. College aid is emphatically not a

deterministic function of the �nancial aid categories, making this a fuzzy RD design.

Other components of the application that are not incorporated in the numerical score

(such as the essay and recommendation letters) undoubtedly play an important role.

Nevertheless, there is a clear discontinuity in the probability of receiving an o¤er of a

larger �nancial aid package.

2.4 The FRD Design and Unconfoundedness

In the FRD setting, it is useful to contrast the RD approach with estimation of av-

erage causal e¤ects under unconfoundedness. The unconfoundedness assumption (e.g.,

Rosenbaum and Rubin, 1983; Imbens, 2004) requires that

Y (0); Y (1) ?? W

���� X:
[9]



If this assumption holds, then we can estimate the average e¤ect of the treatment at

X = c as

E[Y (1)� Y (0)jX = x] = E[Y jW = 1; X = c]� E[Y jW = 0; X = c]:

This approach does not exploit the jump in the probability of assignment at the discon-

tinuity point. Instead it assumes that di¤erences between treated and control units with

Xi = c are interpretable as average causal e¤ects.

In contrast, the assumptions underlying a FRD analysis implies that comparing

treated and control units with Xi = c is likely to be the wrong approach. Treated units

with Xi = c include compliers and alwaystakers, and control units at Xi = c consist of

nevertakers. Comparing these di¤erent types of units has no causal interpretation under

the FRD assumptions. Although, in principle, one cannot test the unconfoundedness

assumption, one aspect of the problem makes this assumption fairly implausible. Un-

confoundedness is fundamentally based on units being comparable if their covariates are

similar. This is not an attractive assumption in the current setting where the probability

of receiving the treatment is discontinuous in the covariate. Thus, units with similar

values of the forcing variable (but on di¤erent sides of the threshold) must be di¤erent in

some important way related to the receipt of treatment. Unless there is a substantive ar-

gument that this di¤erence is immaterial for the comparison of the outcomes of interest,

an analysis based on unconfoundedness is not attractive.

2.5 External Validity

One important aspect of both the SRD and FRD designs is that they, at best, provide

estimates of the average e¤ect for a subpopulation, namely the subpopulation with co-

variate value equal to Xi = c. The FRD design restricts the relevant subpopulation even

further to that of compliers at this value of the covariate. Without strong assumptions

justifying extrapolation to other subpopulations (e.g., homogeneity of the treatment ef-

fect), the designs never allow the researcher to estimate the overall average e¤ect of the

treatment. In that sense the design has fundamentally only a limited degree of external

validity, although the speci�c average e¤ect that is identi�ed may well be of special inter-

est, for example in cases where the policy question concerns changing the location of the

threshold. The advantage of RD designs compared to other non-experimental analyses
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that may have more external validity, such as those based on unconfoundedness, is that

RD designs may have a relatively high degree of internal validity (in settings where they

are applicable).

3 Graphical Analyses

3.1 Introduction

Graphical analyses should be an integral part of any RD analysis. The nature of RD

designs suggests that the e¤ect of the treatment of interest can be measured by the

value of the discontinuity in the expected value of the outcome at a particular point.

Inspecting the estimated version of this conditional expectation is a simple yet powerful

way to visualize the identi�cation strategy. Moreover, to assess the credibility of the RD

strategy, it is useful to inspect two additional graphs for covariates and the density of

the forcing variable. The estimators we discuss later use more sophisticated methods for

smoothing but these basic plots will convey much of the intuition. For strikingly clear

examples of such plots, see Lee, Moretti, and Butler (2004), Lalive (this volume), and

Lee (this volume). Note that, in practice, the visual clarity of the plots is often improved

by adding smoothed regression lines based on polynomial regressions (or other �exible

methods) estimated separately on the two sides of the cuto¤ point.

3.2 Outcomes by Forcing Variable

The �rst plot is a histogram-type estimate of the average value of the outcome for di¤erent

values of the forcing variable, the estimated counterpart to the solid line in Figures 2 and

4. For some binwidth h, and for some number of bins K0 and K1 to the left and right

of the cuto¤ value, respectively, construct bins (bk; bk+1], for k = 1; : : : ; K = K0 + K1,

where

bk = c� (K0 � k + 1) � h:

Then calculate the number of observations in each bin:

Nk =
NX
i=1

1fbk < Xi � bk+1g;

[11]



and the average outcome in the bin:

Y k =
1

Nk
�
NX
i=1

Yi � 1fbk < Xi � bk+1g:

The �rst plot of interest is that of the Y k, for k = 1; : : : ; K against the mid point of

the bins, ~bk = (bk + bk+1)=2. The question is whether around the threshold c there is

any evidence of a jump in the conditional mean of the outcome. The formal statistical

analyses discussed below are essentially just sophisticated versions of this, and if the basic

plot does not show any evidence of a discontinuity, there is relatively little chance that the

more sophisticated analyses will lead to robust and credible estimates with statistically

and substantially signi�cant magnitudes. In addition to inspecting whether there is a

jump at this value of the covariate, one should inspect the graph to see whether there

are any other jumps in the conditional expectation of Y given X that are comparable to,

or larger than, the discontinuity at the cuto¤ value. If so, and if one cannot explain such

jumps on substantive grounds, it would call into question the interpretation of the jump

at the threshold as the causal e¤ect of the treatment. In order to optimize the visual

clarity it is important to calculate averages that are not smoothed over the cuto¤ point.

3.3 Covariates by Forcing Variable

The second set of plots compares average values of other covariates in the K bins. Specif-

ically, let Zi be the M -vector of additional covariates, with m-th element Zim. Then

calculate

Zkm =
1

Nk
�
NX
i=1

Zim � 1fbk < Xi � bk+1g:

The second plot of interest is that of the Zkm, for k = 1; : : : ; K against the mid point

of the bins, ~bk, for all m = 1; : : : ;M . In the case of FRD designs, it is also particularly

useful to plot the mean values of the treatment variable Wi to make sure there is indeed

a jump in the probability of treatment at the cuto¤point (as in Figure 3). Plotting other

covariates is also useful for detecting possible speci�cation problems (see Section 7.1) in

the case of either SRD or FRD designs.
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3.4 The Density of the Forcing Variable

In the third graph, one should plot the number of observations in each bin, Nk, against

the mid points ~bk. This plot can be used to inspect whether there is a discontinuity in the

distribution of the forcing variable X at the threshold. Such discontinuity would raise the

question of whether the value of this covariate was manipulated by the individual agent,

invalidating the design. For example, suppose that the forcing variable is a test score.

If individuals know the threshold and have the option of re-taking the test, individuals

with test scores just below the threshold may do so, and invalidate the design. Such a

situation would lead to a discontinuity of the conditional density of the test score at the

threshold, and thus be detectable in the kind of plots described here. See Section 7.2 for

more discussion of tests based on this idea.

4 Estimation: Local Linear Regression

4.1 Nonparametric Regression at the Boundary

The practical estimation of the treatment e¤ect � in both the SRD and FRD designs is

largely a standard nonparametric regression problem (e.g., Pagan and Ullah, 1999; Här-

dle, 1990; Li and Racine, 2007). However, there are two unusual features. In this case

we are interested in the regression function at a single point, and in addition that single

point is a boundary point. As a result, standard nonparametric kernel regression does

not work very well. At boundary points, such estimators have a slower rate of conver-

gence than they do at interior points. Here we discuss a more attractive implementation

suggested by HTV, among others. First de�ne the conditional means

�l(x) = lim
z"x
E[Y (0)jX = z]; and �r(x) = lim

z#x
E[Y (1)jX = z]:

The estimand in the SRD design is, in terms of these regression functions,

�SRD = �r(c)� �l(c):

A natural approach is to use standard nonparametric regression methods for estimation of

�l(x) and �r(x). Suppose we use a kernel K(u), with
R
K(u)du = 1. Then the regression

functions at x can be estimated as

�̂l(x) =

P
i:Xi<c

Yi �K
�
Xi�x
h

�P
i:Xi<c

K
�
Xi�x
h

� ; and �̂r(x) =

P
i:Xi�c Yi �K

�
Xi�x
h

�P
i:Xi�cK

�
Xi�x
h

� ;
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where h is the bandwidth.

The estimator for the object of interest is then

�̂SRD = �̂r(x)� �̂l(x) =
P

i:Xi>c
Yi �K

�
Xi�x
h

�P
i:Xi>c

K
�
Xi�x
h

� �
P

i:Xi�c Yi �K
�
Xi�x
h

�P
i:Xi�cK

�
Xi�x
h

� :

In order to see the nature of this estimator for the SRD case, it is useful to focus on a

special case. Suppose we use a rectangular kernel, e.g., K(u) = 1=2 for �1 < u < 1, and
zero elsewhere. Then the estimator can be written as

�̂SRD =

PN
i=1 Yi � 1fc � Xi � c+ hgPN
i=1 1fc � Xi � c+ hg

�
PN

i=1 Yi � 1fc� h � Xi < cgPN
i=1 1fc� h � Xi < cg

= Y hr � Y hl;

the di¤erence between the average outcomes for observations within a distance h of the

cuto¤ point on the right and left of the cuto¤, respectively. Nhr and Nhl denote the

number of observations with Xi 2 [c; c + h] and Xi 2 [c � h; c), respectively. This

estimator can be interpreted as �rst discarding all observations with a value of Xi more

than h away from the discontinuity point c, and then simply di¤erencing the average

outcomes by treatment status in the remaining sample.

This simple nonparametric estimator is in general not very attractive, as pointed out

by HTV and Porter (2003). Let us look at the approximate bias of this estimator through

the probability limit of the estimator for �xed bandwidth. The probability limit of �̂r(c),

using the rectangular kernel, is

plim [�̂r(c)] =

R c+h
c

�(x)f(x)dxR c+h
c

f(x)dx
= �r(c) + lim

x#c

@

@x
�(x) � h

2
+O

�
h2
�
:

Combined with the corresponding calculation for the control group, we obtain the bias

plim [�̂r(c)� �̂l(c)]� �r(c)� �l(c) =
h

2
�
�
lim
x#c

@

@x
�(x) + lim

x"c

@

@x
�(x)

�
+O

�
h2
�
:

Hence the bias is linear in the bandwidth h, whereas when we nonparametrically estimate

a regression function in the interior of the support we typically get a bias of order h2.

Note that we typically do expect the regression function to have a non-zero derivative,

even in cases where the treatment has no e¤ect. In many applications the eligibility

criterion is based on a covariate that does have some correlation with the outcome, so
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that, for example, those with poorest prospects in the absence of the program are in the

eligible group. Hence it is likely that the bias for the simple kernel estimator is relatively

high.

One practical solution to the high order of the bias is to use a local linear regression

(e.g., Fan and Gijbels, 1996). An alternative is to use series regression or sieve methods.

Such methods could be implemented in the current setting by adding higher order terms

to the regression function. For example, Lee, Moretti and Butler (2004) include fourth

order polynomials in the covariate to the regression function. The formal properties of

such methods are equally attractive to those of kernel type methods. The main concern

is that they are more sensitive to outcome values for observations far away from the

cuto¤point. Kernel methods using kernels with compact support rule out any sensitivity

to such observations, and given the nature of RD designs this can be an attractive

feature. Certainly, it would be a concern if results depended in an important way on

using observations far away from the cuto¤ value. In addition, global methods put e¤ort

into estimating the regression functions in areas (far away from the discontinuity point)

that are of no interest in the current setting.

4.2 Local Linear Regression

Here we discuss local linear regression. See for a general discussion Fan and Gijbels

(1996). Instead of locally �tting a constant function, we can �t linear regression functions

to the observations within a distance h on either side of the discontinuity point:

min
�l;�l

NX
ijc�h<Xi<c

(Yi � �l � �l � (Xi � c))2 ;

and

min
�r;�r

NX
ijc�Xi<c+h

(Yi � �r � �r � (Xi � c))2 :

The value of �l(c) is then estimated as

[�l(c) = �̂l + �̂l � (c� c) = �̂l;

and the value of �r(c) is then estimated as

[�r(c) = �̂r + �̂r � (c� c) = �̂r;

[15]



Given these estimates, the average treatment e¤ect is estimated as

�̂SRD = �̂r � �̂l:

Alternatively one can estimate the average e¤ect directly in a single regression, by solving

min
�;�;� ;

NX
i=1

1fc�h � Xi � c+hg � (Yi � �� � � (Xi � c)� � �Wi �  � (Xi � c) �Wi)
2 ;

which will numerically yield the same estimate of �SRD.

An alternative is to impose the restriction that the slope coe¢ cients are the same

on both sides of the discontinuity point, or limx#c
@
@x
�(x) = limx"c

@
@x
�(x). This can

be imposed by requiring that �l = �r. Although it may be reasonable to expect the

slope coe¢ cients for the covariate to be similar on both sides of the discontinuity point,

this procedure also has some disadvantages. Speci�cally, by imposing this restriction

one allows for observations on Y (1) from the right of the discontinuity point to a¤ect

estimates of E[Y (0)jX = c] and, similarly, for observations on Y (0) from the left of

discontinuity point to a¤ect estimates of E[Y (1)jX = c]. In practice, one might wish

to have the estimates of E[Y (0)jX = c] based solely on observations on Y (0), and not

depend on observations on Y (1), and vice versa.

We can make the nonparametric regression more sophisticated by using weights that

decrease smoothly as the distance to the cuto¤ point increases, instead of the zero/one

weights based on the rectangular kernel. However, even in this simple case the asymptotic

bias can be shown to be of order h2, and the more sophisticated kernels rarely make much

di¤erence. Furthermore, if using di¤erent weights from a more sophisticated kernel does

make a di¤erence, it likely suggests that the results are highly sensitive to the choice of

bandwidth. So the only case where more sophisticated kernels may make a di¤erence is

when the estimates are not very credible anyway because of too much sensitivity to the

choice of bandwidth. From a practical point of view, one may just want to focus on the

simple rectangular kernel, but verify the robustness of the results to di¤erent choices of

bandwidth.

For inference we can use standard least squares methods. Under appropriate condi-

tions on the rate at which the bandwidth goes to zero as the sample size increases, the

resulting estimates will be asymptotically normally distributed, and the (robust) stan-

dard errors from least squares theory will be justi�ed. Using the results from HTV, the
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optimal bandwidth is h / N�1=5. Under this sequence of bandwidths the asymptotic

distribution of the estimator �̂ will have a non-zero bias. If one does some undersmooth-

ing, by requiring that h / N�� with 1=5 < � < 2=5, then the asymptotic bias disappears

and standard least squares variance estimators will lead to valid con�dence intervals. See

Section 6 for more details.

4.3 Covariates

Often there are additional covariates available in addition to the forcing covariate that

is the basis of the assignment mechanism. These covariates can be used to eliminate

small sample biases present in the basic speci�cation, and improve the precision. In

addition, they can be useful for evaluating the plausibility of the identi�cation strategy,

as discussed in Section 7.1. Let the additional vector of covariates be denoted by Zi. We

make three observations on the role of these additional covariates.

The �rst and most important point is that the presence of these covariates rarely

changes the identi�cation strategy. Typically, the conditional distribution of the covari-

ates Z given X is continuous at x = c. In fact, as we discuss in Section 7, one may wish

to test for discontinuities at that value of x in order to assess the plausibility of the iden-

ti�cation strategy. If such discontinuities in other covariates are found, the justi�cation

of the identi�cation strategy may be questionable. If the conditional distribution of Z

given X is continuous at x = c, then including Z in the regression

min
�;�;� ;�

NX
i=1

1fc�h � Xi � c+hg�(Yi � �� � � (Xi � c)� � �Wi �  � (Xi � c) �Wi � �0Zi)2 ;

will have little e¤ect on the expected value of the estimator for � , since conditional on

X being close to c, the additional covariates Z are independent of W .

The second point is that even though the presence of Z in the regression does not

a¤ect any bias when X is very close to c, in practice we often include observations with

values of X not too close to c. In that case, including additional covariates may eliminate

some bias that is the result of the inclusion of these additional observations.

Third, the presence of the covariates can improve precision if Z is correlated with the

potential outcomes. This is the standard argument, which also supports the inclusion

of covariates in analyses of randomized experiments. In practice the variance reduction
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will be relatively small unless the contribution to the R2 from the additional regressors

is substantial.

4.4 Estimation for the Fuzzy Regression Discontinuity Design

In the FRD design, we need to estimate the ratio of two di¤erences. The estimation

issues we discussed earlier in the case of the SRD arise now for both di¤erences. In

particular, there are substantial biases if we do simple kernel regressions. Instead, it is

again likely to be better to use local linear regression. We use a uniform kernel, with

the same bandwidth for estimation of the discontinuity in the outcome and treatment

regressions.

First, consider local linear regression for the outcome, on both sides of the disconti-

nuity point. Let�
�̂yl; �̂yl

�
= arg min

�yl;�yl

X
i:c�h�Xi<c

�
Yi � �yl � �yl � (Xi � c)

�2
; (4.3)

�
�̂yr; �̂yr

�
= arg min

�yr;�yr

X
i:c�Xi�c+h

�
Yi � �yr � �yr � (Xi � c)

�2
: (4.4)

The magnitude of the discontinuity in the outcome regression is then estimated as

�̂ y = �̂yr � �̂yl:

Second, consider the two local linear regression for the treatment indicator:�
�̂wl; �̂wl

�
= arg min

�wl;�wl

X
i:c�h�Xi<c

(Wi � �wl � �wl � (Xi � c))2 ; (4.5)

�
�̂wr; �̂wr

�
= arg min

�wr;�wr

X
i:c�Xi�c+h

(Yi � �wr � �wr � (Xi � c))2 : (4.6)

The magnitude of the discontinuity in the treatment regression is then estimated as

�̂w = �̂wr � �̂wl:

Finally, we estimate the e¤ect of interest as the ratio of the two discontinuities:

�̂FRD =
�̂ y
�̂w
=
�̂yr � �̂yl
�̂wr � �̂wl

: (4.7)
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Because of the speci�c implementation we use here, with a uniform kernel, and the

same bandwidth for estimation of the denominator and the numerator, we can character-

ize the estimator for � as a Two-Stage-Least-Squares (TSLS) estimator. HTV were the

�rst to note this equality, in the setting with standard kernel regression and no additional

covariates. It is a simple extension to show that the equality still holds when we use local

linear regression and include additional regressors. De�ne

Vi =

0@ 1
1fXi < cg � (Xi � c)
1fXi � cg � (Xi � c)

1A ; and � =

0@ �yl
�yl
�yr

1A : (4.8)

Then we can write

Yi = �
0Vi + � �Wi + "i: (4.9)

Estimating � based on the regression function (4.9) by TSLS methods, with the indi-

cator 1fXi � cg as the excluded instrument and Vi as the set of exogenous variables is
numerically identical to �̂FRD as given in (4.7).

5 Bandwidth Selection

An important issue in practice is the selection of the smoothing parameter, the binwidth

h. In general there are two approaches to choosing bandwidths. A �rst approach consists

of characterizing the optimal bandwidth in terms of the unknown joint distribution of

all variables. The relevant components of this distribution can then be estimated, and

plugged into the optimal bandwidth function. The second approach, on which we focus

here, is based on a cross-validation procedure. The speci�c methods discussed here are

similar to those developed by Ludwig and Miller (2005, 2007). In particular, their propos-

als, like ours, are aimed speci�cally at estimating the regression function at the boundary.

Initially we focus on the SRD case, and in Section 5.2 we extend the recommendations

to the FRD setting.

To set up the bandwidth choice problem we generalize the notation slightly. In the

SRD setting we are interested in

�SRD = lim
x#c
�(x)� lim

x"c
�(x):
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We estimate the two terms as

\lim
x#c
�(x) = �̂r(c);

and

\lim
x"c
�(x) = �̂l(c);

where �̂l(x) and �̂l(x) solve�
�̂l(x); �̂l(x)

�
= argmin

�;�

X
jjx�h<Xj<x

(Yj � �� � � (Xj � x))2 : (5.10)

and �̂r(x) and �̂r(x) solve�
�̂r(x); �̂r(x)

�
= argmin

�;�

X
jjx<Xj<x+h

(Yj � �� � � (Xj � x))2 : (5.11)

Let us focus �rst on estimating limx#c �(x). For estimation of this limit we are interested

in the bandwidth h that minimizes

Qr(x; h) = E

"�
lim
z#x
�(z)� �̂r(x)

�2#
;

at x = c. In principle this could be di¤erent from the bandwidth that minimizes the

corresponding criterion on the lefthand side,

Ql(x; h) = E

"�
lim
x"c
�(x)� �̂l(c)

�2#
;

at x = c. However, we will focus on a single bandwidth for both sides of the threshold,

and therefore focus on minimizing

Q(c; h) =
1

2
�(Ql(c; h) +Qr(c; h)) =

1

2
�
 
E

"�
lim
x"c
�(x)� �̂l(c)

�2#
+ E

"�
lim
x#c
�(x)� �̂r(c)

�2#!
:

We now discuss two methods for choosing the bandwidth.

5.1 Bandwidth Selection for the SRD Design

For a given binwidth h, let the estimated regression function at x be

�̂(x) =

8<:
�̂l(x) if x < c;
�̂r(x) if x � c;
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where �̂l(x), �̂l(x), �̂r(x) and �̂r(x) solve (5.10) and (5.11). Note that in order to

mimic the fact that we are interested in estimation at the boundary, we only use the

observations on one side of x in order to estimate the regression function at x, rather

than the observations on both sides of x, that is, observations with x� h < Xj < x+ h.
In addition, the strict inequality in the de�nition implies that �̂(x) evaluated at x = Xi

does not depend on Yi.

Now de�ne the cross-validation criterion as

CVY (h) =
1

N

NX
i=1

(Yi � �̂(Xi))
2 ; (5.12)

with the corresponding cross-validation choice for the binwidth

hoptCV = argmin
h
CVY (h):

The expected value of this cross-validation function is, ignoring the term that does not

involve h, equal to E[CVY (h)] = C + E[Q(X; h)] = C +
R
Q(x; h)fX(dx). Although the

modi�cation to estimate the regression using one-sided kernels mimics more closely the

estimand of interest, this is still not quite what we are interested in. Ultimately, we are

solely interested in estimating the regression function in the neighborhood of a single

point, the threshold c, and thus in minimizing Q(c; h), rather than
R
x
Q(x; h)fX(x)dx. If

there are quite a few observations in the tails of the distribution, minimizing the criterion

in (5.12) may lead to larger bins than is optimal for estimating the regression function

around x = c, if c is in the center of the distribution. We may therefore wish to minimize

the cross-validation criterion after �rst discarding observations from the tails. Let qX;�;l

be the � quantile of the empirical distribution of X for the subsample with Xi < c, and

let qX;�;r be the � quantile of the empirical distribution of X for the subsample with

Xi � c. Then, we may wish to use the criterion

CV�Y (h) =
1

N

X
i:qX;�;l�Xi�qX;1��;r

(Yi � �̂(Xi))
2 : (5.13)

The modi�ed cross-validation choice for the bandwidth is

h�;optCV = argmin
h
CV�Y (h): (5.14)

The modi�ed cross-validation function has expectation, again ignoring terms that do not

involve h, proportional to E[Q(X; h)jqX;�;l < X < qX;�;r]. Choosing a smaller value of �
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makes the expected value of the criterion closer to what we are ultimately interested in,

that is, Q(c; h), but has the disadvantage of leading to a noisier estimate of E[CV�Y (h)].
In practice, one may wish to choose � = 1=2, and discard 50% of the observations on

either side of the threshold, and afterwards assess the sensitivity of the bandwidth choice

to the choice of �. Ludwig and Miller (2005) implement this by using only data within 5

percentage points of the threshold on either side.

Note that, in principle, we can use a di¤erent binwidth on either side of the cuto¤

value. However, it is likely that the density of the forcing variable x is similar on both

sides of the cuto¤ point. If, in addition, the curvature is similar on both sides close to

the cuto¤ point, then in large samples the optimal binwidth will be similar on both sides.

Hence, the bene�ts of having di¤erent binwidths on the two sides may not be su¢ cient

to balance the disadvantage of the additional noise in estimating the optimal value from

a smaller sample.

5.2 Bandwidth Selection for the FRD Design

In the FRD design, there are four regression functions that need to be estimated: the

expected outcome given the forcing variable, both on the left and right of the cuto¤point,

and the expected value of the treatment variable, again on the left and right of the cuto¤

point. In principle, we can use di¤erent binwidths for each of the four nonparametric

regressions.

In the section on the SRD design, we argued in favor of using identical bandwidths

for the regressions on both sides of the cuto¤ point. The argument is not so clear for the

pairs of regression functions by outcome we have here. In principle, we have two optimal

bandwidths, one based on minimizing CV�Y (h), and one based on minimizing CV
�
W (h),

de�ned correspondingly. It is likely that the conditional expectation of the treatment

variable is relatively �at compared to the conditional expectation of the outcome variable,

suggesting one should use a larger binwidth for estimating the former.4 Nevertheless, in

practice it is appealing to use the same binwidth for numerator and denominator. To

avoid asymptotic biases, one may wish to use the smallest bandwidth selected by the

4In the extreme case of the SRD design where the conditional expectation of W given X is �at on
both sides of the threshold, the optimal bandwidth would be in�nity. Therefore, in practice it is likely
that the optimal bandwidth for estimating the jump in the conditional expectation of the treatment
would be larger than the bandwidth for estimating the conditional expectation of the outcome.
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cross validation criterion applied separately to the outcome and treatment regression:

hoptCV = min
�
argmin

h
CV�Y (h); argmin

h
CV�W (h)

�
;

where CV�Y (h) is as de�ned in (5.12), and CV
�
W (h) is de�ned similarly. Again, a value of

� = 1=2 is likely to lead to reasonable estimates in many settings.

6 Inference

We now discuss some asymptotic properties for the estimator for the FRD case given in

(4.7) or its alternative representation in (4.9).5 More general results are given in HTV.

We continue to make some simplifying assumptions. First, as in the previous sections, we

use a uniform kernel. Second, we use the same bandwidth for the estimator for the jump

in the conditional expectation of the outcome and treatment. Third, we undersmooth, so

that the square of the bias vanishes faster than the variance, and we can ignore the bias

in the construction of con�dence intervals. Fourth, we continue to use the local linear

estimator.

Under these assumptions we do two things. First, we give an explicit expression for

the asymptotic variance. Second, we present two estimators for the asymptotic variance.

The �rst estimator follows explicitly the analytic form for the asymptotic variance, and

substitutes estimates for the unknown quantities. The second estimator is the standard

robust variance for the Two-Stage-Least-Squares (TSLS) estimator, based on the sample

obtained by discarding observations when the forcing covariate is more than h away from

the cuto¤ point. The asymptotic variance and the corresponding estimators reported

here are robust to heteroskedasticity.

6.1 The Asymptotic Variance

To characterize the asymptotic variance we need a couple of additional pieces of notation.

De�ne the four variances

�2Y l = lim
x"c
Var(Y jX = x); �2Y r = lim

x#c
Var(Y jX = x);

5The results for the SRD design are a special case of those for the FRD design. In the SRD design,
only the �rst term of the asympotic variance in equation (6.18) is left since V�w = C�y;�w = 0, and the
variance can also be estimated using the standard robust variance for OLS instead of TSLS.
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�2Wl = lim
x"c
Var(W jX = x); �2Wr = lim

x#c
Var(W jX = x);

and the two covariances

CYWl = lim
x"c
Cov(Y;W jX = x); CYWr = lim

x#c
Cov(Y;W jX = x):

Note that, because of the binary nature of W , it follows that �2Wl = �Wl � (1 � �Wl),

where �Wl = limx"c Pr(W = 1jX = x), and similarly for �2Wr. To discuss the asymptotic

variance of �̂ , it is useful to break it up in three pieces. The asymptotic variance of
p
Nh(�̂ y � � y) is

V�y =
4

fX(c)
�
�
�2Y r + �

2
Y l

�
: (6.15)

The asymptotic variance of
p
Nh(�̂w � �w) is

V�w =
4

fX(c)
�
�
�2Wr + �

2
Wl

�
(6.16)

The asymptotic covariance of
p
Nh(�̂ y � � y) and

p
Nh(�̂w � �w) is

C�y ;�w =
4

fX(c)
� (CYWr + CYWl) : (6.17)

Finally, the asymptotic distribution has the form

p
Nh � (�̂ � �) d�! N

�
0;
1

� 2w
� V�y +

� 2y
� 4w
� V�w � 2 �

� y
� 3w
� C�y ;�w

�
: (6.18)

This asymptotic distribution is a special case of that in HTV (page 208), using the

rectangular kernel, and with h / N��, for 1=5 < � < 2=5 (so that the asymptotic bias

can be ignored).

6.2 A Plug-in Estimator for the Asymptotic Variance

We now discuss two estimators for the asymptotic variance of �̂ . First, we can estimate

the asymptotic variance of �̂ by estimating each of the components, �w, � y, V�w , V�y , and

C�y ;�w and substituting them into the expression for the variance in (6.18). In order to

do this we �rst estimate the residuals

"̂i = Yi � �̂y(Xi) = Yi � 1fXi < cg � �̂yl � 1fXi � cg � �̂yr;
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�̂i = Wi � �̂w(Xi) =Wi � 1fXi < cg � �̂wl � 1fXi � cg � �̂wr:

Then we estimate the variances and covariances consistently as

�̂2Y l =
1

Nhl

X
ijc�h�Xi<c

"̂2i ; �̂2Y r =
1

Nhr

X
ijc�Xi�c+h

"̂2i ;

�̂2Wl =
1

Nhl

X
ijc�h�Xi<c

�̂2i ; �̂2Wr =
1

Nhr

X
ijc�Xi�c+h

�̂2i ;

ĈYWl =
1

Nhl

X
ijc�h�Xi<c

"̂i � �̂i; ĈYWr =
1

Nhr

X
ijc�Xi�c+h

"̂i � �̂i:

Finally, we estimate the density consistently as

f̂X(x) =
Nhl +Nhr
2 �N � h :

Then we can plug in the estimated components of V�y , V�W , and C�Y ;�W from (6.15)-

(6.17), and �nally substitute these into the variance expression in (6.18).

6.3 The TSLS Variance Estimator

The second estimator for the asymptotic variance of �̂ exploits the interpretation of the

�̂ as a TSLS estimator, given in (4.9). The variance estimator is equal to the robust

variance for TSLS based on the subsample of observations with c�h � Xi � c+h, using
the indicator 1fXi � cg as the excluded instrument, the treatmentWi as the endogenous

regressor and the Vi de�ned in (4.8) as the exogenous covariates.

7 Speci�cation Testing

There are generally two main conceptual concerns in the application of RD designs, sharp

or fuzzy. A �rst concern about RD designs is the possibility of other changes at the same

cuto¤ value of the covariate. Such changes may a¤ect the outcome, and these e¤ects may

be attributed erroneously to the treatment of interest. For example, at age 65 individuals

become eligible for discounts at many cultural institutions. However, if one �nds that

there is a discontinuity in the number of hours worked by age at 65, this is unlikely to

be the result of these discounts. The more plausible explanation is that there are other

institutional changes that a¤ect incentives to work at age 65. The e¤ect of discounts on
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attendance at these cultural institutions, which may well be present, may be di¢ cult to

detect due to the many other changes at age 65.

The second concern is that of manipulation of the forcing variable. Consider the Van

der Klaauw example where the value of an aggregate admission score a¤ected the likeli-

hood of receiving �nancial aid. If a single admissions o¢ cer scores the entire application

packet of any one individual, and if this person is aware of the importance of this cuto¤

point, they may be more or less likely to score an individual just below the cuto¤ value.

Alternatively, if applicants know the scoring rule, they may attempt to change particu-

lar parts of their application in order to end up on the right side of the threshold, for

example by retaking tests. If it is costly to do so, the individuals retaking the test may

be a selected sample, invalidating the basic RD design.

We also address the issue of sensitivity to the bandwidth choice, and more generally

small sample concerns. We end the section by discussing how, in the FRD setting, one

can compare the RD estimates to those based on unconfoundedness.

7.1 Tests Involving Covariates

One category of tests involves testing the null hypothesis of a zero average e¤ect on

pseudo outcomes known not to be a¤ected by the treatment. Such variables includes

covariates that are, by de�nition, not a¤ected by the treatment. Such tests are familiar

from settings with identi�cation based on unconfoundedness assumptions (e.g., Heckman

and Hotz, 1989; Rosenbaum, 1987; Imbens, 2004). In the RD setting, they have been

applied by Lee, Moretti and Butler (2004) and others. In most cases, the reason for the

discontinuity in the probability of the treatment does not suggest a discontinuity in the

average value of covariates. If we �nd such a discontinuity, it typically casts doubt on

the assumptions underlying the RD design. In principle, it may be possible to make the

assumptions underlying the RD design conditional on covariates, and so a discontinuity in

the conditional expectation of the covariates does not necessarily invalidate the approach.

In practice, however, it is di¢ cult to rationalize such discontinuities with the rationale

underlying the RD approach.
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7.2 Tests of Continuity of the Density

The second test is conceptually somewhat di¤erent, and unique to the RD setting. Mc-

Crary (this volume) suggests testing the null hypothesis of continuity of the density of

the covariate that underlies the assignment at the discontinuity point, against the alter-

native of a jump in the density function at that point. Again, in principle, one does not

need continuity of the density of X at c, but a discontinuity is suggestive of violations

of the no-manipulation assumption. If in fact individuals partly manage to manipulate

the value of X in order to be on one side of the cuto¤ rather than the other, one might

expect to see a discontinuity in this density at the cuto¤ point. For example, if the

variable underlying the assignment is age with a publicly known cuto¤ value c, and if

age is self-reported, one might see relatively few individuals with a reported age just

below c, and relatively many individuals with a reported age of just over c. Even if such

discontinuities are not conclusive evidence of violations of the RD assumptions, at the

very least, inspecting this density would be useful to assess whether it exhibits unusual

features that may shed light on the plausibility of the design.

7.3 Testing for Jumps at Non-discontinuity Points

A third set of tests involves estimating jumps at points where there should be no jumps.

As in the treatment e¤ect literature (e.g., Imbens, 2004), the approach used here consists

of testing for a zero e¤ect in settings where it is known that the e¤ect should be zero.

Here we suggest a speci�c way of implementing this idea by testing for jumps at the

median of the two subsamples on either side of the cuto¤ value. More generally, one may

wish to divide the sample up in di¤erent ways, or do more tests. As before, let qX;�;l and

qX;�;r be the � quantiles of the empirical distribution of X in the subsample with Xi < c

and Xi � c, respectively. Now take the subsample with Xi < c, and test for a jump at

the median of the forcing variable. Splitting this subsample at its median increases the

power of the test to �nd jumps. Also, by only using observations on the left of the cuto¤

value, we avoid estimating the regression function at a point where it is known to have

a discontinuity. To implement the test, use the same method for selecting the binwidth

as before, and estimate the jump in the regression function at qX;1=2;l. Also, estimate the

standard errors of the jump and use this to test the hypothesis of a zero jump. Repeat
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this using the subsample to the right of the cuto¤ point with Xi � c. Now estimate the
jump in the regression function and at qX;1=2;r, and test whether it is equal to zero.

7.4 RD Designs with Misspeci�cation

Lee and Card (this volume) study the case where the forcing variable X is discrete. In

practice this is of course always the case. This implies that ultimately one relies for iden-

ti�cation on functional form assumptions for the regression function �(x). Lee and Card

consider a parametric speci�cation for the regression function that does not fully satu-

rate the model, that is, it has fewer free parameters than there are support points. They

then interpret the deviation between the true conditional expectation E[Y jX = x] and

the estimated regression function as random speci�cation error that introduces a group

structure on the standard errors. Lee and Card then show how to incorporate this group

structure into the standard errors for the estimated treatment e¤ect. This approach will

tend to widen the con�dence intervals for the estimated treatment e¤ect, sometimes con-

siderably, and leads to more conservative and typically more credible inferences. Within

the local linear regression framework discussed in the current paper, one can calculate

the Lee-Card standard errors (possibly based on slightly coarsened covariate data if X

is close to continuous) and compare them to the conventional ones.

7.5 Sensitivity to the Choice of Bandwidth

All these tests are based on estimating jumps in nonparametric regression or density

functions. This brings us to the third concern, the sensitivity to the bandwidth choice.

Irrespective of the manner in which the bandwidth is chosen, one should always inves-

tigate the sensitivity of the inferences to this choice, for example, by including results

for bandwidths twice (or four times) and half (or a quarter of) the size of the originally

chosen bandwidth. Obviously, such bandwidth choices a¤ect both estimates and stan-

dard errors, but if the results are critically dependent on a particular bandwidth choice,

they are clearly less credible than if they are robust to such variation in bandwidths. See

Lee, Moretti, and Butler (2004) and Lemieux and Milligan (this volume) for examples of

papers where the sensitivity of the results to bandwidth choices is explored.
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7.6 Comparisons to Estimates Based on Unconfoundedness in
the FRD Design

When we have a FRD design, we can also consider estimates based on unconfoundedness

(Battistin and Rettore, this volume). In fact, we may be able to estimate the average

e¤ect of the treatment conditional on any value of the covariateX under that assumption.

Inspecting such estimates and especially their variation over the range of the covariate

can be useful. If we �nd that, for a range of values of X, our estimate of the average e¤ect

of the treatment is relatively constant and similar to that based on the FRD approach,

one would be more con�dent in both sets of estimates.

8 Conclusion: A Summary Guide to Practice

In this paper, we reviewed the literature on RD designs and discussed the implications

for applied researchers interested in implementing these methods. We end the paper by

providing a summary guide of steps to be followed when implementing RD designs. We

start with the case of SRD, and then add a number of details speci�c to the case of FRD.

Case 1: Sharp Regression Discontinuity (SRD) Designs

1. Graph the data (Section 3) by computing the average value of the outcome variable

over a set of bins. The binwidth has to be large enough to have a su¢ cient amount

of precision so that the plots looks smooth on either side of the cuto¤ value, but at

the same time small enough to make the jump around the cuto¤ value clear.

2. Estimate the treatment e¤ect by running linear regressions on both sides of the

cuto¤ point. Since we propose to use a rectangular kernel, these are just standard

regression estimated within a bin of width h on both sides of the cuto¤ point. Note

that:

� Standard errors can be computed using standard least square methods (robust
standard errors)

� The optimal bandwidth can be chosen using cross-validation methods (Section
5)
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3. The robustness of the results should be assessed by employing various speci�cation

tests.

� Looking at possible jumps in the value of other covariates at the cuto¤ point
(Section 7.1)

� Testing for possible discontinuities in the conditional density of the forcing
variable (Section 7.2).

� Looking whether the average outcome is discontinuous at other values of the
forcing variable is (Section 7.3).

� Using various values of the bandwidth (Section 7.5, with and without other
covariates that may be available.

Case 2: Fuzzy Regression Discontinuity (FRD) Designs

A number of issues arise in the case of FRD designs in addition to those mentioned

above.

1. Graph the average outcomes over a set of bins as in the case of SRD, but also graph

the probability of treatment.

2. Estimate the treatment e¤ect using TSLS, which is numerically equivalent to com-

puting the ratio in the estimate of the jump (at the cuto¤ point) in the outcome

variable over the jump in the treatment variable.

� Standard errors can be computed using the usual (robust) TSLS standard er-
rors (Section 6.3), though a plug-in approach can also be used instead (Section

6.2).

� The optimal bandwidth can again be chosen using a modi�ed cross-validation
procedure (Section 5)

3. The robustness of the results can be assessed using the various speci�cation tests

mentioned in the case of SRD designs. In addition, FRD estimates of the treatment

e¤ect can be compared to standard estimates based on unconfoundedness.
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Fig 2: Potential and Observed Outcome Regression Functions
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Fig 1: Assignment Probabilities (Sharp RD)
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Fig 3: Assignment Probabilities (Fuzzy RD)
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Fig 4: Potential and  Observed Outcome Regression (Fuzzy RD)




